Have my published Salesforce Platform Events been

received by my Mule App?
Insights into Salesforce PubSub with MuleSoft

h ://sf fdc-mule-

Salesforce introduced evented data integration around 2015. Whilst it uses internally a Kafka implementation,
the “channel” to the outside world was implemented using CometD and Bayeux protocol®.

In 2021 Salesforce announced a modernization of the evented approach - moving from CometD to gRPC? - and
calls it now Pub/Sub APP.

In parallel with announcing the general availability of the Pub/Sub API from Salesforce, MuleSoft also released a
connector to easily consume the APl in Mulesoft integrations”.

This document discusses in two use cases the changes coming with the MuleSoft PubSub connector, and how this
can be used to track that a Platform Event indeed has been received and processed from Mulesoft. Also, an
approach to testing the performance of the connector is described, using the tracking approach.

This document assumes the reader is aware of both sides, else it is recommended to read through the
information in the footnotes.

First, a short context needs to be set recalling core concepts of the Salesforce Streaming APl and the MuleSoft
internal storage.

ReplaylD and MuleSoft Objectstore

ReplaylD

On the Salesforce Event Bus each published event message is assigned an opaque ID contained in the ReplayId
field. The ReplayId field value, which is populated by the system when the event is delivered to subscribers,
refers to the position of the event in the event stream®.

The event stream has a message durability of now 72 hours for the “high volume” platform events-

Using the ReplayId it is possible to receive a message from the stream within that period.

Deleted Events

Outside Retention Accessible Events Within

Retention Window

Window
| J
[| \
Event Event Event Event Event Event Event Event
replayld 1 replayld 2 replayld 3 replayld &4 replayld 5 replayld 6 replayld 7 replayld 8 o
e— e T ———————— — T — T IE——— SE—
Replay Option: -2 5 -1
Oldest Nawast
Events
Read all retained Read events 6, 7, Read new events
and new events 8, and newer

! See here in the Streaming API Developer Guide

2 The New Salesforce Event Bus

3 Pub/Sub API: Building Event-Driven Integrations Just Got Even Easier
* Introducing the MuleSoft Connector for Salesforce’s Pub/Sub API

5 Streaming APl - M Durabili

mailto:thoeger@salesforce.com
https://sfdc.co/sfdc-mule-pubsub
https://developer.salesforce.com/docs/resources/img/en-us/240.0?doc_id=dev_guides%2Fapi_streaming%2Fimages%2Fapi_streaming_event_numbers.png&folder=api_streaming
https://developer.salesforce.com/docs/atlas.en-us.api_streaming.meta/api_streaming/using_streaming_api_durability.htm
https://blogs.mulesoft.com/news/mulesoft-connector-for-salesforce-pub-sub-api/
https://developer.salesforce.com/blogs/2021/07/pub-sub-api-building-event-driven-integrations-just-got-even-easier
https://medium.com/salesforce-architects/the-new-salesforce-event-bus-f82165cb0585
https://developer.salesforce.com/docs/atlas.en-us.api_streaming.meta/api_streaming/BayeauxProtocolAndCometD.htm

There are also two more acceptable values for the ReplayId defined to control the receiver side:
Replay Description Usage
Option

ReplayId Subscriber receives all stored events after the Catch up on missed events after a certain event

event specified by its ReplayId value and message, for example, after a connection failure. To

new events. subscribe with a specific replay ID, save the replay
ID of the event message after which you want to
retrieve stored events. Then use this replay ID when
you resubscribe.

(Default if no replay option is specified.) We recommend that clients subscribe with the -1
Subscriber receives new events that are option to receive new event messages. If clients
broadcast after the client subscribes. need to get earlier event messages, they can use

any other replay option.

Subscriber receives all events, including past Catch up on missed events and retrieve all stored

events that are within the retention window events, for example, after a connection failure. Use

and new events. this option sparingly. Subscribing with the -2 option
when a large number of event messages are stored
can slow performance.

What does that mean for a MuleSoft subscriber?

The subscriber process needs to carefully track, which replaylD it has processed to ensure it does not miss® or
duplicate process events in case of downtime and restart (let it be intentional or due to unintentional process

recovery).
The MuleSoft connector for the legacy CometD approach had a built-in approach’ to keep track of the received
events and natively allowed a developer to define the replay behavior, using a built-in MuleSoft Objectstore

facility. See here the example configuration Ul:

Display Mame: Replay channel listemer

Basic Settings

Connector configuration: Salesforce_Config_basic] dh B’

General

: . i
Streaming channel: ALL

Replay option: + FROM_LAST_REPLAY_ID l

FROM_REPLAY_ID
ONLY_NEW

Replay Id:
Replay failed events if any or resume from last re

The size (in bytes) of the event queue (Deprecated): 0

6 «

miss” ... will be discussed later in this document

” MuleSoft Connector Replay Listener Documentation

https://docs.mulesoft.com/salesforce-connector/10.16/salesforce-connector-processing-events#replay-topic-listener-and-replay-channel-listener-sources

The new MuleSoft PubSub connector® has been streamlined and delegates the responsibility of controlling the
replay behavior to the developer. This allows advanced replayID tracking, to correctly ensure that the event has
been received and processed.

Here is the configuration Ul of the PubSub Connector

Display Mame: Subscribe channel listener

Basic Settings

Connector configuration: Salesforce_PubSub_Config 2] h B’
General

Channel name: ${sfdc.PE-Channal} a Q:><h

Replay option Replay id from object store B8

Object Store Name: fx persisitent_Object_store

Object Store Key: fx LastReplaylD_Persist

Batch events size: ${sfdc.pubsubBatchSize}
This shows that it is required to specify a dedicated Object Store.

Mulesoft Object Store

The MuleSoft object store is a facility for storing objects in or across Mule applications. Mule runtime engine
(Mule) uses object stores to persist data for eventual retrieval. Internally, Mule uses object stores in various
filters, routers, and other message processors that need to store states between messages.’ Especially for
CloudHub deployments it is important to consider the features of Object Store v2*°.

It is important to note that the free Object Store v2 limits usage to 10 transactions per second (TPS) per
application. There is a premium add-on available to allow up to 100 TPS per app.™

Now, knowing the limits of the free Object Store a decision has to be made on how to deal with it. On one hand,
one could purchase the premium add-on. Alternatively, a compromise could be made to say, let’s accept the
standard and let’s work around it.

For this document, the second approach was created and shall be described in the section below.

Keeping track of the received and processed messages

One of the challenges of the salesforce provided event-based integration is, to understand if a particular message
has been received by a subscriber (and ideally, been processed)®. It is understood that this requirement can only
be met with additional logic. Salesforce introduced earlier this year a new functionality, based on the “UUID”
field supporting this message tracking®.

In the following section, an approach to track messages using the new PubSub connector shall be outlined.

& Salesforce Pub/Sub Connector 1.0

% Object Store Documentation

% Object Store v2 Features

1 Object Store Note

2 See Wikipedia article - section “Disadvanatges”

13 |dentify and Match Event Messages with the EventUuid Field

https://developer.salesforce.com/docs/atlas.en-us.238.0.platform_events.meta/platform_events/platform_events_event_uuid.htm
https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
https://docs.mulesoft.com/object-store/#object-store-notes
https://docs.mulesoft.com/object-store/#object-store-v2-features
https://docs.mulesoft.com/mule-runtime/4.4/mule-object-stores
https://docs.mulesoft.com/salesforce-pubsub-connector/1.0/

High level, the flow is shown on the drawing below:

High Level Flow Object Store

Mulesoft
Account | |A.ccnuanrIggar| FlattormEvent Log | _ Inbound PlattermEvent Trigger l|| Llalaner] ’ Mulesalt Lo-glu:l [Gmm Slatus Message PE | [Sand PE [

|1 "CAUD on Ascount” _ |
e

I

| 2 "publish PE” i |
i
]

Y

:
| 4 "receiva Event®
;
: B "extrasi UUID"

 ERREEEEEEEEEEET FEEEERPEEE

i i i Ll TN
i i i i 1 & "some mars fun”
: 7 reraule PE with UUID*
E E ; ; E | 8 "publish ts SFDC”
E E ; : % "catch Incaming Em:nm- i
: : |4 p"8dd PE Leg and H H
: ! " malch with Sanded Lag Line" U '
Account | |Ac:nuanr1ggar| | FlatformEvent Log | - | Inbaund FlattarmEveniTrigger |I| Listaner | I Mulesoft Logic | [Gmm Slatus Message PE | [Send PE |
This shows several interesting details that are discussed below.
Let's look first at the Salesforce side % PE_Log_c

® |t uses a custom object, called PE Log ¢ =
e The logic, publishing the platform event, needs to capture the UUID as
outlined in the documentation, and writes it to the PE_Log__c object™

32 // add to PE_Log for publish

33 List<PE_Log__c> pelogs = new List<PE_Log__c>();

34

35 // Inspect publishing result for each event

36v for (Database.SaveResult sr : results) {

37 PE_Log_ ¢ pl= new PE_Log_ c();

38v if (sr.isSuccess()) {

39 System.debug(DebugClass + 'Successfully published event:' + sr);
40 System.debug(DebugClass + 'UUID=' + EventBus.getOperationId(sr));
41 pl.UUID__ _c = EventBus.getOperationId(sr);

42 pl.IsPrimary_ c = true;

43 v } else {

44 v for (Database.Error err : sr.getErrors()) {

45 System.debug(DebugClass + 'Error returned: ' +
46 err.getStatusCode() +

47 -+

48 err.getMessage());

49 }

50 }

51 pelogs.add(pl);

52 }

e There is also an Inbound platform event, designated to handle the response
message from Mulesoft called new _pe test e

e Atrigger, listening on the platform event new_pe_test e captures the
message and adds it to the PE_Log__c and, using a helper logic, relates it to
the record, created upon publishing (that one has been flagged as
“IsPrimary”).
The code for the trigger and helper logic can be found in this git repo

Now, what about the MuleSoft side?

The MuleSoft event listener App contains two major functionalities:
(1) Listen to the platform Event channel
(2) Publish the response to the Salesforce Pub Sub Bus

¥ Full Trigger Source Code here

https://git.soma.salesforce.com/thoeger/PlatformEventTracking
https://git.soma.salesforce.com/thoeger/PlatformEventTracking/blob/master/apex/AccountTrigger.apxt

Receiving via PubSub

The core flow looks like shown on the following drawing:

MuleSoft PubSub Receiving with Object Store
{Core Logic)

?

receive event message

v

(exh‘acl uuDI to hrariablel'-'.'.: from payload.eventid N
e A
-

-
| extract replaylD to variable }=::l from payload.replayld w
- S

SUbﬂDW)

(In\rnke event handling Ioglcj

[s’mre replaylD to Memory Object Storej

&

In fact - with that, the goal to receive the platform event message - has been achieved.
Now, Salesforce needs to be informed about that.

Publishing event to Salesforce

That is done in the event handling logic as shown before.
A closer look at this part shows this logic:
MuleScft PubSub publish ULID

to SFDC

nhas acoess to the

This brings us to one more thing - in order to giﬁ:ﬁ;@“ I
publish via the MuleSoft PubSub connector it is B o
required to set two fields in the message with [srocusar ad vom o5 | _ [P
valid content: | "Jr"
(a) CreatedDate: this needs to be in Unix i?“"“'"“““"“ﬁ"‘”“““'ﬁ'
time
(b) CreatedBy1Id: this needs to be a valid = 2 Suimikrca Otard
Salesforce User ID ... it is recommended N oy,
to use the same user as subscribing to
with the PubSub Connector. P T

T
And here is one caveat - the PubSub Connector

does not easily allow retrieving the Salesforce userlD.

To handle this, one option would be persisting the Salesforce userlID value in the config file. However, this is
additional overhead and redundant. So, it is preferred to retrieve it and persist it in the in-memory object store as
part of the mule application.

Get the Salesforce UserlID for publishing

For this, first it is recommended to use the in-memory object store and create a new key to store the Salesforce

userlD.

With this, a logic like this (using the classic

Salesforce connector) has been implemented in a UuleSolt gz::g:r?n':gc User ID
dedicated sub-flow: ?

' ™
read from in memory Object Store
| the key sfdcUser

) ¥

\.'athscr[Ic value from ObjectStore isvi Pty
-

o =,

execute Get user info method
using classic salesforc connector
b S

v _
N

f B
| extract Salesforce userld from response ~== payload.userld

o ¢ A
| store userlD in object store key sfdcUser
\ /

k. o I
- (‘
' ™
| store value in Variable vars.sfdcUser |

T

[k A
G J_/|

-\.

Mulesoft Pub Sub Connector - Message durability and Message
Replay

The Salesforce event bus stores messages for 72 hours. The responsibility of keeping track of which messages
have been processed is in the hand of the receiver. As shown in the previous section, using a combination of
Salesforce and MuleSoft it is possible to keep track of the processed messages.

However - there is one other functionality to be discussed - the Replay option. It had been mentioned already
earlier in this document here.

In fact - it is recommended to design the pub-sub receiver flow so that it can reasonably recover after an
intended or unintended restart. Specifically, this means, the receiver should be configured to pick up events from
the last processed ReplayId® only. And the only way the receiver can get this is by reading a key from the
persistent object store.

Buffering the standard object store for higher transaction access

As described above, when reading and processing an event the last processed event is stored to the in-memory

object store, using a key LastReplaylD_inMemory.

> There are org wide Salesforce governer limits for reading events from the streaming API. See High-Volume Platform Event Default
Allocations

https://developer.salesforce.com/docs/atlas.en-us.platform_events.meta/platform_events/platform_event_limits.htm
https://developer.salesforce.com/docs/atlas.en-us.platform_events.meta/platform_events/platform_event_limits.htm

In order to transfer that value to the persistent cloud hub object store, a scheduler flow has been created with
this logic

In-Memory and Persistent Object Stores

. this flow runs using a scheduler B
every 1000ms

& Y
read from In-Memory OS5
the value for key LastReplaylD_inMemory
p.

) y

read from Persistent OS5

| the value for key LastReplaylD_Persist
e -

v
trua

. LastiReplaylD_inMemory = LastReplaylD_Persist
i Y g

store LastReplaylD_inMemory to |
persistent Object Store
. _

] k. &
- -

%

-,

-, -

f T
| (do nothing) |
L

The consideration is as follows:

e The standard object store allows max 10 TPS. The scheduler would write every second - so this is 1 TPS
e If there are processed more events in a second, and it would come to an unexpected termination, than it
can happen that after a restart events are re-read from the topic and processed a second time. So it is

recommended to ensure that the event processing logic is idempotent unless intended (e.g. for the Event
log it is important to log it as often as it is touched)

Tracking Example

The screenshot below shows a representation of a fully processed and acknowledged platform event

PEL 0000027894 Parent Log Record

Details

 Information - common

PE-Log Name PEL-0000027894 Parent PE-Log

uuiD f4c3d1f6-2161-4ec7-8ae8-3255e90acf3f

LastReplayiD

UUID_for_Log_Msg

Created By #$ Thomas Hoeger, 02.01.2023, 19:03 CreatedFullTimestamp 1672682611

Delta to parent
UnixTime Format of the log
record creation - used for

calculation processing time
with Child records

> Information -Text

\ Parent Record Info

IsPrimary ® s ChildCount 1
Owner #$ Thomas Hoeger Last Modified By #$ Automatena<ess, 02.01.2023, 19:03
This value shows, how many
times a certain event message
has been received
PE-Logs (1) &-|

1item - Sorted by Created Date - Updated 13 hours ago

uuip ~ | PE-Log Name v | LastRepla.. v | CreatedDate . | CreatedFullTim... v
1 fac3dif 3t PEL- 2367972 02.01.2023, 19:03 1672682625 v
View All

PE-Log
PEL-0000028094
Child Log Record
Details

 Information - common

PE-Log Name PEL-0000028094 Parent PE-Log PEL-0000027894
uup 14c3d116-2161-4ec7-8ae8-3255e90ac3f
LastReplayiD 2367972 source arpe
ReplaylD from the Sent UUID_for_Log_Msg 7119b2a7-eBec-41b3-95a3-035ec9dc69f7
[Event - can only be read ffom| ¢,eateq 8y ¥ Automated Process, 02.01.2023, 19:03 CreatedFullTimestamp 1672682625
the message itself -
Delta to parent 1

in Milleseconds
calculated upon matching
parent with child records

“ Information -Text

Notes
"source": "grpc”,
"received": {
"payload™: {
"eventld": "f4c3d1f6-2161-4ec7-Bae8-3255e90acf3t",
"replayld": 2367972,
"event":
"CreatedDate": 1672682611525,
"CreatedByld": "0054K000001b8jnQAA",
"AccountExternallD_c": nul,
"Accountid_c": "0014K00000hKXCWQA4",
"Operation_c": "Insert-trigger”,
"AccountName__c": "00 3199 new gen account - 2023-01-02 19:03:30",
"AccountEmployeeCount__c": null,

“full_c": null
}
}
)
}
Mulesoft Infos
‘v Parent Record Info
IsPrimary ChildCount
Owner ¥ Automated Process Last Modified By ¥ Automated Process, 02.01.2023, 19:03

With this approach it is possible to understand, which events have been processed in a persistent way, also
allowing to see the event message data if needed for debugging

Having timestamps additionally allows for us to get t an initial view of the processing performance of the pub-sub
receiver.

Caveats

The above described approach illustrates the functionality of the pub-sub protocol and the Salesforce and
MuleSoft capabilities.
The approach was built as a prototype, with that several assumptions and considerations shall be outlined here

Salesforce side

Beside the apex code in triggers and the helper class also a new object solely for tracking has been created. This
can grow significantly in a high-volume scenario. So, there are further considerations on cleaning this object up
on a regular basis.

Also ... if there is a desire for permanent logging of the whole platform event history, salesforce core might not
be the best place with the current capabilities.™®

Integration approach for the response

In fact, the processing update to Salesforce is done via the Pub/Sub API as well. For the sake of this approach
using publishing to the Pub/Sub API was chosen, also with the intent to showcase the details to be taken care of
when using this new MuleSoft Connector

More generally, one could argue on the approach and if a request/response approach using a REST api call would
be better. This topics deserves a dedicated discussion, no being the scope of this document.

Just to note, for time measurements as shown above, this async approach does introduce overhead, since also
the reaction time of the subscriber trigger is included in the calculation of the delta. So, it is more relevant here
to showcase a relative comparison of timing behavior.

BatcheventSize - How does the work?

One of the key advancements of the PubSub Receiver is that it allows controlling the amount of messages
received and processed in a given period of time.

Using the tracking setup described above an initial test using a Salesforce developer org and MuleSoft Cloud Hub
was executed.

As a test case, in Salesforce 500 records were created using an Apex code. After all the processing, in Salesforce
the “delta” time between creating the log entry during record creation and the log entry from the confirmation
message was analyzed, as well as the MuleSoft worker statistics were reviewed

Current summary:
e Using BatcheventSize=1 vs 100 triples the time until salesforce records the processing, which is still in the
area milliseconds
e A 0.1vCore worker is sufficient to handle the load - there is not seen a performance improvement when
using a 0.2 core worker

Please find below the test measurements:

% There are considerations if salesforce would building something - pls check with the PM Tyson Read

mailto:tyson.read@salesforce.com

Test case 1

Mulesoft Worker 0.1 vCores, pubsubBatchSize =1
The records had been created in Salesforce at 15:42:26

In Salesforce we see Delta times from 3 to 93 - as shown here

Record Count

Delta to parent + |~ || Record Count Delta to pamnl@ ¥ | | Record Count
3 1 93 2
\ 4 5 92 5
5 4 91 [
\ / 6 & 90 5
h 7 7 89 5
@= 500 a B :
#l' 9 8 87 4
\ 10 5 86 10
1 6 85 2
12 3 84 7
13 & 83 7
14 5 82 3
Outbound - Total Requests by Response Type = (1) Outbound - Average Response Time | (1)
25K 50 ms
20K A0 ms
15K 30 ms
1.0K 20ms
500 10 ms
] oms
15:40 5:41 542 15.43 15:44 1545 546 15:47 15:48 15:49 5:50 15:40 15:41 1542 15:43 1544 15:45 15:46 15:47 15:48 1549 15:50
- 0K == sfdc-grpc-2022-dec
2023-01-D3 15:40.00
~ - = sfdc-grpc-2022-dec-7b&f497cb8-manév: 146 MB
JVM - CPU % Utilization per Pod Limit | () VM -Heap U EP VM - Thread Count | (1)
Limit: 510 MB
40.00% 600 MB 82
- 500 MB 81
400 MB 80
20.00%
300 MB 79
10.00% 200 MB =
0% 100 MB 7
15:40 15:42 15:44 1546 15:48 15:50 15:40 15:42 54 15:46 1548 15:50 15:40 1542 15:44 15:46 15:50
== sfdc-grpc-2022-dec-7b8f497 cb&-mgnév = sfdc-grpc-2022-dec-7b8f497cb8-mgnév Limit = sfdc-grpc-2022-dec-7b8f497cbB8-mgnév
Heap Committed = (1) Heap Used | ()
400 MB 600 MB
350 MB 500 MB
400 MB
300 MB
300 MB
e 200 M8 \/_,_\/\
200 MB 100 MB
15:40 15:41 1542 15:43 15:44 15:45 15:46 5:47 15:48 15:49 5:50 15:40 15:4 15:42 1543 15:44 1545 15:46 15:47 5:48 15:49 1550
== sfdc-grpe-2022-dec-7b8f497cbE-man6v == sfdc-grpe-2022-dec-7hBf497cbs-man6y = Limit
sfdc-grpc-2022-dec-7b8f497cb8-mgn6v
Thread Count | (1) VM Uptime | ()
a2 16.67 min
“ 13.32 min /
a0 -
10.00 min /
79 -
- 6.67 min ‘_.r_r____—————’_'{
77 3.33 miin
1540 1541 15:42 15:43 15:44 15:45 15:46 15:47 15:48 5:49 5:50 15:40 15:41 15:42 15:43 15:44 15:45 15:46 15:47 548 5:49 15:50

== sfdc-grpe-2022-dec-7b8f497cb8-mgnév

== sfdc-grpc-2022-dec-7bBf497cb8-mgnéy

Test case 2

Mulesoft Worker 0.1 vCores, pubsubBatchSize =100
The records had been created in Salesforce at 16:13:04
In Salesforce we see Delta times from 3 to 28 - as shown here

And MuleSoft shows these counters
Delta to parsnlm * | | Record Count

Record Count
Delta to parent . |v | | Record Count
‘ 1 13 28 7
| 2 12 27 10

3 10 26 22

4 20 25 16

500 3% 5 37 24 12

7 13 23 30
8 19 22 18
8 a3 21 15
TE% 10 15 20 25
il 29 19 16
Outbound - Total Requests by Response Type | (1) Outbound - Average Response Time
40K 250 ms
a0k 200 ms
150 ms
20K
100 ms
o 50 ms
] 0ms
16:10 1611 1612 16:13 16:14 16:15 16:16 1617 16:18 16:19 16:20 16:10 1611 1612 16:13 16:14 16:15 16:16 1617 16:18 16:19 16:20
- 0K sfdc-grpe-2022-dec
JVM - CPU % Utilization per Pod Limit | (7) WM - Heap Used | (1) IWM - Thread Count
40.00% 600 MB 130
5 120 /
20.00% 500 MB 2
400 MB e
2000% 100
300 MB
. 50
100 200 MB /"1-1___‘_,_\’ L~ " -
~
0% 100 MB 70
16:10 16:12 16:14 16:16 1618 16:20 16:10 16:12 16:14 16:16 16:18 16:20 16:10 16:12 16:14 16:16 16:18 16:20
== sfdc-grpe-2022-dec-679576bcdb-phgrm == sfdc-grpc-2022-dec-679576bcdb-phgrm Limit = sfdc-grpc-2022-dec-679576bcdb-phgrm
Heap Committed | () Heap Used
400 ME 600 MB
260 MEB 500 MB
400 MB
300 MB
300 MB
250 MB 200MB
200 MB 100 MB
16:10 1611 16:12 16:13 16:14 16:15 16:16 1617 16:18 16:19 16:20 16:10 16:11 16:12 1613 16:14 1615 16:16 16117 16:18 16:19 16:20
== sfdc-grpc-2022-dec-679576bcdb-phgrm == sfdc-grpc-2022-dec-679576bcdb-phgrm == Limit
Thread Count | (i) JVM Uptime
130 20.00 min
120 18.33 min e
10 16.57 min _7__,/
100 15.00 min "
90 13.33 min ——
20 11.67 min -~
70 10.00 min _—
16:10 16:11 16:12 16113 16:14 16:15 16:16 16:17 16:18 16:19 16:20 16:10 16:11 16:12 16:13 16:14 16:15 16:16 16:17 16:18 16:19 16:20

== sfdc-grpc-2022-dec-679576bcdb-phgrm == sfdc-grpc-2022-dec-679576bcdb-phgrm

Test case 3

Mulesoft Worker 0.1 vCores, pubsubBatchSize =500
The records had been created in Salesforce at 16:34:30

In Salesforce we see Delta times from 1 to 28 - as shown here
Record Count [1

Delta to parent + |+ || Record Count Delta to parent 1 |~ || Record Count
1 14 28 4
2 25 27 10

8 12 26 17
4 7 25 25
5 32 24 19

s 500

3 7 23 26
7 7 22 15
g 24 21 15
g 14 20 21
10 18 19 23
Outbound - Total Requests by Response Type | (1) Outbound - Average Response Time = (1)
40K 250 ms
ank 200 ms
150 ms
20K
100 ms
B 50ms
o 0ms
16:30 1631 16:32 16:33 16:34 1635 1636 16:37 16:38 16:30 16:31 16:32 16:33 16:34 16:35 16:36 1637 16:38
- 0K == sfdc-grpe-2022-dec
VM - CPU % Utilization per Pod Limit | () JVM - Heap Used | (1) J¥M - Thread Count | (1)
500 MB 100
500 MB 95
400 MB 50 \
£.00% _— 300 MB a5
2.00% 200 MB M a0 ——
0% 100 MB 75
16:30 1632 16:34 1636 16:38 16:30 16:32 16:34 18 16:38 16:30 16:32 16:34 16:36 16:38
= sfdc-grpc-2022-dec-7ch667d6f7-5qr87 = sfdc-grpc-2022-dec-7cb667d6f7-5qr87 Limit = sfdc-grpc-2022-dec-7cb667d6f7-5qr87
Heap Committed | (7) Heap Used | (1)
400 MB 600 MB
- 500 MB
400 MB
300 MB
300 MB
250E 200 MB N
200 ME 100 MB
1630 16:31 16:32 16:33 16:34 1635 16:36 16:37 16:38 16:30 163 16:32 16:33 16:34 16:35 16:36 16:37 16:38
= sfdc-grpc-2022-dec-Tch667d67-5qre7 == sfdc-grpc-2022-dec-Tch667d67-5qr87 w= Limit
Thread Count | (1) WM Uptime | (1)
100 16,67 min
55 15.00 min /
o 13.33 min —
. 11.67 min __,_,_)--—-"")_7__7
10.00 min Py
0 — e — 833 min ’J___r_,_;—ﬂfj
75 667 min
16:30 16:31 16:32 16:33 16:34 16:35 1636 16:37 16:38 16:30 16:31 16:32 16:33 16:34 16:35 16:36 1637 16:38

== sfdc-grpc-2022-dec-7cb667d6f7-5qr87 == sfdc-grpc-2022-dec-7cb667d6f7-5qr87

Test case 4

Mulesoft Worker 0.2 vCores, pubsubBatchSize =500
The records had been created in Salesforce at 16:56:45

In Salesforce we see Delta times from 1 to 30 as shown here

Delta to parem@ + | | Record Count

- 500

£
| § -

8
)
10
Outbound - Total Requests by Response Type | (1)
40K
30K
20K
10K
o
16:53 16:54 16:55 16:56 1657 16:58 16:59
- 0K

JVM - CPU % Utilization per Pod Limit | (7) VM - Heap Used | (1)
25.00% 1.0 GB
20.00% 200 MB
15.00% 600 MB

QOutbound - Average Response Time

800 ms

600 ms

400 ms

200 ms

1

13

22

17

29

23

23

12

Delta to parent 4 |~ | Record Count

30 2
28 20
28 "
27 23
26 25
25 16
24 5
23 5

E

.
=

16:53

w— sfdc-grpc-2022-dec

16:54

10.00% 400 MB __,r—\\
—
5.00% 200 MB

0% 0B
16:53 16:54 1655 16556 16:57 16:58 16:59 16:54 16:56

== sfdc-grpc-2022-dec-77cbbfb9f7-chdxy = sfdc-grpc-2022-dec-77cbbfb9f7-ckdxv

Heap Committed | (1)

620 MB
600 MB
580 MB
560 MB

540 MB

16:53 1654 16:55 16:56 16:57 16:58 16:59

== sfdc-grpc-2022-dec-77cbbfbf7-chkdv

Thread Count | (i)

200

100

16:53 16:54 16:55 1656 16:57 16:58 16:59

== sfdc-grpc-2022-dec-77cbbfbIf7-ckdxv

16:58
Limit
Heap Used
1.0GB
800 MB
600 MB

16:55 16:56 16:57 16:58

<]

JVM - Thread Count

200

= sfic-grpc-2022-dec-77cbbfb9f7-ckdxv

400 MB
200 MB

0B
16:53

16:54

== sfdc-grpc-2022-dec-77cbbfbaf7-chdw == Limit

JVM Uptim

18.33 min
16.67 min
15.00 min

1333 min

e

67 Min___ e

10.00 min
16:53

16:54

== sfdc-grpc-2022-dec-77cbbfbaf7-ckdxv

16:59

Appendix

Example MuleSoft Worker Log messages

Example Log messages during pub-sub receiver startup - showing that the replay | was read correctly:

Python

2023-01-02T17:58:30.82Z INFO [xbjdp] PubSubConnection [MuleRuntime].uber.02:
[sfdc-grpc-2022-dec].uber@org.mule.runtime.module.extension.internal.runtime.source.ExtensionMessageSource.lambda$
null$17:435 @7e46a13d - PartnerConnection validated. Validating Pub/Sub API Connection. Arguments:
{definedPlatformEvents={new_pe_test__e=new_pe_test, InboundAccountPE__e=InboundAccountPE,
AccountUpdatePE__e=AccountUpdatePE, CasePE_Out__e=CasePE Out, Cloud_News__e=Cloud News},
connection=com.mulesoft.connector.Salesforce.pubsub.internal.connection.PubSubConnection@395b85ba (sessionId:
00D4K00BBBO39G1S! AROAQKTY****N8D, instanceUrl: https://pe-demo-001-dev-ed.my.Salesforce.com, tenantId:
00D4K00BBOO39G1SUAU, apiVersion: 54.0, partnerConnection: com.sforce.soap.partner.PartnerConnection@666d1039,

metadataConnection: com.sforce.soap.metadata.MetadataConnection@44e47e85).}.

2023-01-02T17:58:30.876Z INFO [xbjdp] PubSubConnection [MuleRuntime].uber.02:
[sfdc-grpc-2022-dec].uber@org.mule.runtime.module.extension.internal.runtime.source.ExtensionMessageSource.lambda$
null$17:435 @7e46a13d - Pub/Sub API connection validated. TopicInfo retrieved successfully. Arguments:
{requestedTopicInfo=topic_name: "/event/new_pe_test__e"

tenant_guid: "CORE/prod/00D4K0000039G1SUAU"

can_publish: true

can_subscribe: true

schema_id: "cB0JfRi-Fq2tNZTYqg6Cuhw"

rpc_id: "2e60db94-8fcf-4764-8ccO-9a14de5bb21d"

, connection=com.mulesoft.connector.Salesforce.pubsub.internal.connection.PubSubConnection@395b85ba (sessionId:
00D4K00BOO39G1S! AROAQKTY****N8D, instanceUrl: https://pe-demo-001-dev-ed.my.Salesforce.com, tenantId:
00D4K00B0BBB39G1SUAU, apiVersion: 54.8, partnerConnection: com.sforce.soap.partner.PartnerConnection@666d1039,

metadataConnection: com.sforce.soap.metadata.MetadataConnection@44e47e85).}.

2023-01-02T17:58:30.911Z INFO [xbjdp] CloudObjectStore [MuleRuntime].uber.02:
[sfdc-grpc-20822-dec] .uber@org.mule.runtime.module.extension.internal.runtime.source.ExtensionMessageSource.lambda$

null$17:435 @7e46a13d - Object store last attempt was less than 10000ms before, will not attempt until next window

2023-01-02T17:58:33.918Z INFO [xbjdp] SubscribeChannelSource [MuleRuntime].uber.02:
[sfdc-grpc-2022-dec].uber@org.mule.runtime.module.extension.internal.runtime.source.ExtensionMessageSource.lambda$
null$17:435 @7e46a13d - Replay id validation passed. Startup continues. Arguments:
{topic=/event/AccountUpdatePE__e, replayId=2367429}.

2023-01-02T17:58:33.922Z INFO [xbjdp] ExtensionMessageSource [MuleRuntime].uber.02:
[sfdc-grpc-2022-dec].uber@org.mule.runtime.module.extension.internal.runtime.source.ExtensionMessageSource.lambda$

null$17:435 @7e46a13d - Message source 'subscribe-channel-listener' on flow 'sfdc-grpcFlow' successfully started

